

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶): 志盛翔

DATE: (日期):2018-04-25

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GF $63V100\mu F(\phi 10X12.5)$
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	ГОMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
孟庆庆	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	SPECIFICATION GF SERIES						ALTERN	ATION HI	STORY
Rev.	Date	GF SE Mark		ge	Contents	2	Purpose	Drafter	Approver
KCV.	Date	IVIAIK	1 a	ge	Contents	,	1 urpose	Diantei	Appioves
	Version		01					Page	1

	MAN YUE ELECTRONICSELECTRONICSCOMPANY LIMITEDSPECIFICATIONGF SERIESGF SERIES							S	AMX	ON				
Tab	Fable 1 Product Dimensions and Characteristics Unit: mm													
	Safety vent for $\geq \Phi 6.3$ $\downarrow \downarrow \downarrow \downarrow + a$ $\downarrow \downarrow - 1.0$ $\downarrow - 1.0$								ubber					
N o.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tan δ (120Hz , 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100kHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifetime (Hrs)		ension (mm) F	фd	Sleev e
1	EGF107M1JG1BRR**P1	63	100	-20%~+20%	-40~105	0.09	63	314	0.344	3000	10X12.5	5.0	0.6	PET

Version	01	Page	2
		-	

 Application Part Number System Construction Characteristics Rated voltage & Surge voltage 	4 4 5 5~10
 Construction Characteristics Rated voltage & Surge voltage 	5
 Characteristics .1 Rated voltage & Surge voltage 	
.1 Rated voltage & Surge voltage	5~10
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 $\tan \delta$	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)	1
5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	d 11
Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR **SPECIFICATION** GF SERIES

SAMXON

1.

Application This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

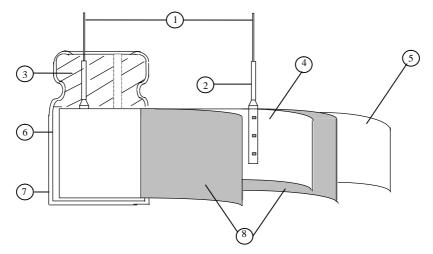
Part Number System 2.

1 2	3 4	56	5 7		89	[10 11 12	2 131	4	1516	17
SERIES						-	CASE SIZE				
Series	Cap(MFD)	Code	Tolerance (%)	Code	Voltage (W.V.)	Code	Case Size	Feature (Code	SAMXON Product	Line
ESM EKF ESS	0.1	104	±5	J	2 2.5	0D 0E	Diameter(Radial bulk	RR	For internal use onl (The product lines	
EKS EGS EKM	0.22	224	±10	к	4 6.3 8	0G 0J 0K	3.5 1 4 C 5 D 6.3 E 8 F	Ammo Tap	_	we have H,A,B,C,D E,M or 0,1,2,3,4,5,9	
EKG EOM EZM	0.33	334 474	±15	L	10 12.5	1A 1B	10 G 12.5 I	2.0mm Pitch	TT TU		
EZS EGF ESF EGT	1	105	±20	м	16 20	1C 1D	13.5 V 14 4 14.5 A	3.5mm Pitch	τv	Sleeve Material	Code
EGK EGE EGD	2.2	225	±30	N	25 30	1E 1I	16 K 16.5 7 18 L	5.0mm Pitch	тс	PET	Р
EGC ERS ERF	3.3	335	-40 0	w	32 35 40	13 1V 1G	18.5 8 20 M 22 N	Lead Cut & F	Form	PVC	I.
ERL ERR ERT	4.7	475	-20 0	A	42 50	1M 1H	25 O 30 P 34 W 35 Q 40 R	СВ-Туре	СВ		he sleev
ERE ERD ERH	10	106	-20 +10	с	57 63	1L 1J	40 R 42 4 45 6	СЕ-Туре НЕ-Туре	CE HE		ve mate
EBD ERA ERB ERC	33	226 336	-20 +40	×	71 75 80	1S 1T 1K	51 S 63.5 T 76 U	КД-Туре	кр		rial is P
EFA ENP ENH	47	476	-20 +50	s	85 90	1R 19	90 X 100 Z	FD-Type	FD		the sleeve material is PVC, there will be blank in seventeenth digit
ERW ERY ELP	100	107	-10 0	в	100 120	2A 20	Len.(mm) Code 4.5 45 5 05	ЕН-Туре	EH		re will b
EAP EQP EDP	220	227	-10 +20	v	125 150 160	2B 2Z 2C	5.4 54 7 07 7.7 77 10.2 T2	PCB Term			e blank
ETP EHP EUP	330	337	-10 +30	Q	180	20 2P 2D	11 11 11.5 1A	Snap-in	sw sx		in sever
EKP EEP EFP	470	477	-10 +50	т	215 220	22 2N	12 12 12.5 1B 13 13 13.5 1C	Childh III	sz		teenth
ESP EVP EGP EWR	2200 22000	228 229	+10	E	230 250	23 2E	13.5 1C 20 20 25 25 29.5 2J	Lug	SG		digit.
	33000	339	-5 +15 -5	F	275 300 310	2T 2I 2R	29.5 2J 30 30 31.5 3A 35 35 35.5 3E		05	L	1
EWF EWS EWH	47000	479	+20	G R	315 330	2F 2U	35.5 3E 50 50 80 80 100 1L		06		
EWL EWB VSS	100000	10T	+20 0 +30	0	350 360	2V 2X	105 1K 110 1M 120 1N	Screw	Т5 Т6		
VNS VKS VKM	150000	15T	+50	-	375 385 400	2Q 2Y 2G	130 1P 140 1Q 150 1R		D5		
VRL VNH VZS VRF	220000 330000	22T 33T	+5 +15	z	420 450	20 2M 2W	155 1E 160 1S 165 1F 170 1T		D6		
	1000000	10M	+5 +20 +10	D	500 550	2H 25	180 1U				
	1500000	15M	+50 +10	ү н	600 630	26 2J	215 2A 210 2M 220 2N				
	2200000	22M	+30				190 1V 200 2L 215 2A 210 2M 220 2N 240 2Q 250 2R 260 2S 270 2T				
	3300000	33M					270 2T				

5

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5
v crsion	01	I age	5

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	ITEM	PERFORMANCE								
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									
1.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T < Criteria >	$<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.							
1.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Table</criteria></condition>	he capao then, me		-		istor (1	$k \Omega \pm 10$)Ω) in se	eries for 2
4.4	tan δ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	n Capac	itance, fo	r measur	ing frequ	iency, vo	oltage and	d tempera	ture.
4.5	Terminal strength	0.5r Over 0. < Criteri	ength of eapacitor rength of pacitor, $2 \sim 3$ seco er of leav nm and 1 5mm to 0 a >	, applied Termina applied f nds, and d wire ess 0.8mm	force to ls. orce to b then ben Tens 5 1	ent the te t it for 9 ile force (kgf) $\overline{5}$ (0.51) $\overline{0}$ (1.0)	erminal (0° to its N	1~4 mm original Bending (k 2.5 (5 (0	from the 1	rubber) fo vithin 2~:

Version	01	Page	6

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<condition></condition>						<u> </u>		
		STEP					Time Time to reach thermal equilibrium			
		1		20 ± 2					-	
		2		-40(-25)			to reach		•	
		3		20±2			to reach		•	
		4		$105\pm$			to reach			
		5		20 ± 2	2	Time	to reach	thermal of	equilibri	um
		<criteria></criteria> a. $\tan \delta$ shall				4.4The le	eakage cı	irrent me	easured s	shall not
	Temperature	more than 8 tin		-			4 4 751			1 11
	characteristi		b. In step 5, tan δ shall be within the limit more than the specified value.		nt of Iter	n 4.41he	leakage	current	shall not	
4.6	cs		-		(π) ratio	hall not	avaaad th		of the fo	llowing
		c. At-40°C (-2 table.		-	· · · · ·		T	1	1	_
		Working Volta	-	6.3	10	16	25	35	50	63
		Z-25°C/Z+2		4	3	2	2	2	2	2
		Z-40°C/Z+2	0°C	8	6	4	3	3	3	3
		Working Voltag	ge (V)	100]					
		Z-25°C/Z+20	-	2	-					
		Z-40°C/Z+20	0°C	3						
		For capacitanc	e value	> 1000 u			41 1000	F C	7 25/7	20°C
				/ 1000 ¤	г, Auu 0.	o per ano	ther 1000	J µ F IOr	L-23/L7	-20 C,
				> 1000 ¤		-	ther 1000			
		Capacitance, ta			Add 1.0) per ano	ther 1000	μ F for		
		<condition></condition>	n ^δ , and	d impedar	Add 1.0 nce shall b) per ano e measur	ther 1000 ed at 120)µF for 2)Hz.	Z-40℃/2	Z+20℃.
		<condition> According to I</condition>	n^{δ} , and EC6038	d impedar 34-4No.4.	Add 1.0 nce shall b 13 method) per ano e measur	ther 1000 red at 120 apacitor is) µ F for 1)Hz.	Z-40°C/2	Z+20°C.
		<pre><condition> According to I 105°C ±2 with</condition></pre>	n δ , and EC6038 h DC bi	d impedar 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r) per ano e measur ls, The ca rated ripp	ther 1000 red at 120 apacitor is le curren) µ F for 2)Hz. s stored a t for Tab	Z-40°C/2 at a temp ble 1 . (T	Z+20°C. berature of the sum of
		Condition According to I $105^{\circ}C \pm 2$ with DC and ripple	$n \delta$, and EC6038 h DC bi	d impedar 34-4No.4. as voltage voltage sł	Add 1.0 nce shall b 13 method e plus the r hall not es) per ano e measur ls, The ca rated ripp kceed the	ther 1000 red at 120 apacitor is le curren e rated w	μ F for 2 DHz. s stored a t for Tab yorking	Z-40°C/2 at a temp ble 1 . (T voltage)	Z+20°C. perature of the sum of Then the
	Load	<pre><condition> According to I 105°C ±2 with</condition></pre>	$n \delta$, and EC6038 h DC bi e peak v l be testo	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours rec) per ano e measur ls, The ca rated ripp kceed the	ther 1000 red at 120 apacitor is le curren e rated w	μ F for 2 DHz. s stored a t for Tab yorking	Z-40°C/2 at a temp ble 1 . (T voltage)	Z+20°C. perature of the sum of Then the
4.7	Load life	Condition> According to II 105°C ±2 with DC and ripple product should result should n <criteria></criteria>	$n \delta$, and EC6038 h DC bi e peak v l be testoneet the	d impedar 34-4No.4. as voltage voltage sl ed after 16 following	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table:) per ano e measur ls, The ca ated ripp acceed the covering	ther 1000 red at 120 apacitor is le curren e rated w time at at	μ F for 2 DHz. s stored a t for Tab yorking	Z-40°C/2 at a temp ble 1 . (T voltage)	Z+20°C. perature of the sum of Then the
4.7		Condition> According to I 105°C ±2 with DC and ripple product should result should n <criteria> The characteria</criteria>	$n \delta$, and EC6038 h DC bi e peak l be testoneet the estic sha	d impedar 34-4No.4. as voltage voltage sl ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours red g table: e followin	b per ano e measur ls, The ca ated ripp acced the covering g require	ther 1000 red at 120 apacitor is le curren e rated w time at at) µ F for 2)Hz. s stored a t for Tab vorking y mospher	Z-40°C/2 at a temp ble 1 . (T voltage)	Z+20°C. perature of the sum of Then the
4.7	life	$<$ Condition>According to II105°C ± 2 withDC and rippleproduct shouldresult should n $<$ Criteria>The characterinLeakage	$n \delta$, and EC6038 h DC bi be peak v l be testoneet the astic sha	d impedar 34-4No.4. as voltage sh ed after 16 following <u>11 meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in	b per ano e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisf	μ F for 2 DHz. s stored a t for Tab yorking y mospher	Z-40°C/2 at a temp ble 1 . (T voltage)	Z+20°C. perature of the sum of Then the
4.7	life	$<$ Condition>According to II105°C ± 2 withDC and rippleproduct shouldresult should n $<$ Criteria>The characterinLeakageCapacit	$n \delta$, and EC6038 h DC bi be peak v l be testoneet the astic sha	d impedar 34-4No.4. as voltage sh ed after 16 following <u>11 meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>+</u>	b per ano e measure ls, The ca ated ripp acceed the covering <u>g require</u> 4.3 shall <u>225% of</u>	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisfi- initial va) μ F for DHz. s stored a t for Tab vorking v mospher ied ilue.	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi	Z+20°C. berature of the sum of Then the tions. The
4.7	life	$<$ Condition>According to II105°C ± 2 withDC and rippleproduct shouldresult should n $<$ Criteria>The characterinLeakage	$n \delta$, and EC6038 h DC bi be peak v l be testoneet the astic sha	d impedar 34-4No.4. as voltage sh ed after 16 following <u>11 meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in	b per ano e measure ls, The ca ated ripp acceed the covering <u>g require</u> 4.3 shall <u>225% of</u>	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisfi- initial va) μ F for DHz. s stored a t for Tab vorking v mospher ied ilue.	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi	Z+20°C. berature of the sum of Then the tions. The
4.7	life	$<$ Condition>According to II105°C ± 2 withDC and rippleproduct shouldresult should n $<$ Criteria>The characterinLeakageCapacit	$n \delta$, and EC6038 h DC bi e peak v l be testoneet the astic shate e current ance Ch	d impedar 34-4No.4. as voltage sh ed after 16 following <u>11 meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>+</u>	b per ano e measure ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> e than 150	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisfi initial va 0% of the	μ F for 2 DHz. s stored a t for Tab yorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi	Z+20°C. berature of the sum of Then the tions. The
4.7	life	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should n<criteria>The characteriaLeakageCapacittan δAppeara</criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testoneet the astic shate e current ance Ch	d impedar 34-4No.4. as voltage sh ed after 16 following <u>11 meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in <u>Within ±</u> Not more	b per ano e measure ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> e than 150	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisfi initial va 0% of the	μ F for 2 DHz. s stored a t for Tab yorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi	Z+20°C. berature of the sum of Then the tions. The
4.7	life	<condition> According to II 105°C ± 2 with DC and ripple product should result should in <criteria> The characterin Leakage Capacit tan δ Appeara<condition></condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testo neet the stic sha e curren ance Ch ance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th t nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>d</u> Not more There sha	b per ano e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> <u>e than 15</u> <u>all be no</u>	ther 1000 red at 120 apacitor is le curren e rated w time at at ements. be satisfi initial va 0% of the leakage of	μ F for 1 DHz. s stored a t for Tab yorking v mospher ied alue. specifie of electro	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi ed value. blyte.	Z+20°C.
4.7	life	<condition> According to II 105°C ± 2 with DC and ripple product should in <criteria> The characteria Leakage Capacit tan δ Appeara<condition> The capacitors a</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testoneet the astic sha e curren ance Ch ance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th t nange stored wi	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>d</u> Not more There sha	b per ano e measur ls, The ca rated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 15</u> <u>all be no</u> age applie	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisf initial va 0% of the leakage of ed at a te) μ F for DHz. s stored a t for Tab yorking v mospher ied alue. e specifie of electro	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ed value. olyte.	$Z+20^{\circ}C.$ berature of the sum of Then the tions. The
4.7	life	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should n<criteria>The characterinLeakageCapacittan δAppeara<condition>The capacitors a$1000+48/0$ hore</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak γ l be test neet the e curren ance Ch ance are then urs. Foll	d impedar 34-4No.4. as voltage sl ed after 10 following 11 meet th t nange stored wi lowing thi	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours rec g table: e followin Value in Within <u>1</u> Not more There sha is period t	b per ano e measur ls, The ca ated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 150</u> <u>all be no</u> <u>nge applic</u> he capac	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisf initial va 0% of the leakage o ed at a te itors shal	 μ F for 2 Hz. s stored a t for Tab yorking with the store of the stor	Z-40°C/2 at a temp ble 1 . (T voltage) ic condi ed value. blyte. re of 105 oved fro	$z+20^{\circ}C.$
4.7	life	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should n<criteria>The characterinLeakageCapacittan δAppeara<condition>The capacitors a$1000+48/0$ houchamber and b</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test heet the astic sha e curren ance Ch ance are then urs. Follow	d impedar 34-4No.4. as voltage sl ed after 16 following 11 meet th t nange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: <u>e followin</u> Value in Within <u>d</u> Not more There sha is period t bilized at	b per ano e measur ls, The ca ated ripp acceed the covering <u>g require</u> 4.3 shall <u>25% of</u> <u>e than 150</u> all be no age applic he capac: room ter	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a te itors shal appendure	 µ F for 1 µ F for 1 µ F for 1 µ Hz. s stored a t for Tabyorking with the store of the specifies alue. as specifies and the specifies and the specifies be remained and the specifies and the specifies be remained and the specifies be remained and the specifies 	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ed value. olyte. re of 105 oved fro b hours.	$Z+20^{\circ}C.$
4.7	life test	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should n<criteria>The characterinLeakageCapacittan δAppeara<condition>The capacitors a$1000+48/0$ hore</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testo neet the stic sha e curren ance Ch ance ance ch ance ance allow ected to	d impedar 34-4No.4. as voltage sh ed after 10 following 11 meet th t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>d</u> Not more There sha ith no volta is period t bilized at limiting re	b per ano e measure ated ripp ated rippp ated rippp ated ripp ated rippo ated ripppo ated rippo ated rippp	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. <u>be satisficial va</u> <u>0% of the</u> leakage of ed at a te itors shal apperature $x \pm 100 \Omega$	 μ F for 1 μ F for 2 μ for 7 μ for 4 η with 1 	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ic condi ed value. olyte.	Z+20°C. perature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the tess Next they ed voltage
	life test Shelf	<condition> According to II 105°C ± 2 with DC and ripple product should in <criteria> The characteria Leakage Capacitition><condition> The capacitors a 1000+48/0 hou chamber and b shall be connected</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testender the astic shates the astic shates the ance Ch ance Ch ance ance ch ance allow acted to min. After	d impedar 34-4No.4. as voltage sh ed after 10 following 11 meet th t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>d</u> Not more There sha ith no volta is period t bilized at limiting re	b per ano e measure ated ripp ated rippp ated rippp ated ripp ated rippo ated ripppo ated rippo ated rippp	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. <u>be satisficial va</u> <u>0% of the</u> leakage of ed at a te itors shal apperature $x \pm 100 \Omega$	 μ F for 1 μ F for 2 μ for 7 μ for 4 η with 1 	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ic condi ed value. olyte. re of 105 oved fro bours.	Z+20°C. perature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the tess Next they ed voltage
	life test Shelf life	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should in<criteria>The characterintLeakageCapacittan δAppeara<condition>The capacitors a$1000+48/0$ houchamber and bshall be connerapplied for 300</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testender the astic shates the astic shates the ance Ch ance Ch ance ance ch ance allow acted to min. After	d impedar 34-4No.4. as voltage sh ed after 10 following 11 meet th t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>d</u> Not more There sha ith no volta is period t bilized at limiting re	b per ano e measure ated ripp ated rippp ated rippp ated ripp ated ripp ated rippo ated ripppo ated rippo	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. <u>be satisficial va</u> <u>0% of the</u> leakage of ed at a te itors shal apperature $x \pm 100 \Omega$	 μ F for 1 μ F for 2 μ for 7 μ for 4 η with 1 	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ic condi ed value. olyte. re of 105 oved fro bours.	Z+20°C. perature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the tess Next they ed voltage
	life test Shelf life	<condition>According to II$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should in<criteria>The characterintLeakageCapacittan δAppeara<condition>The capacitors a$1000+48/0$ houchamber and bshall be connerapplied for 300</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be testender the astic shates the astic shates the ance Ch ance Ch ance ance ch ance allow acted to min. After	d impedar 34-4No.4. as voltage sh ed after 10 following 11 meet th t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>d</u> Not more There sha ith no volta is period t bilized at limiting re	b per ano e measure ated ripp ated rippp ated rippp ated ripp ated ripp ated rippo ated ripppo ated rippo	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. <u>be satisficial va</u> <u>0% of the</u> leakage of ed at a te itors shal apperature $x \pm 100 \Omega$	 μ F for 1 μ F for 2 μ for 7 μ for 4 η with 1 	Z-40°C/2 at a temp ole 1 . (T voltage) ic condi ic condi ed value. olyte. re of 105 oved fro bours.	Z+20°C. perature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the tess Next they ed voltage

Version	01	Page	7

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

ı			
		<criteria></criteria>	
		The characteristic shall meet th	
	Shelf	Leakage current	Value in 4.3 shall be satisfied
4.8	life	Capacitance Change	Within $\pm 25\%$ of initial value.
	test	tan δ	Not more than 150% of the specified value.
		Appearance	There shall be no leakage of electrolyte.
		-	tored more than 1 year, the leakage current may
		11.0	through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submitter followed discharge of 5 min 30 The test temperature shall be C_R :Nominal Capacitance (μ <criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	15~35℃.
4.10	Vibration test	perpendicular directions. Vibration frequency ran, Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter grain in place with a bracket. 4mm or less Image: Criteria> After the test, the following itter Inner construction No No	: 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute eater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

X 7	01	Ъ	0
V ersion	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

		(Conditions)		
		<condition> The capacitor shall be tes</condition>	ted under the followin	a conditions:
		Soldering temperature	$: 245\pm3^{\circ}C$	-
		Dipping depth	: 243±3 C	·
4.1.1	Solderability	Dipping speed	: 25±2.5m	m/s
4.11	test	Dipping speed Dipping time	: 25±2.5m	
		<criteria></criteria>	. 5±0.55	
			A minim	um of 95% of the surface being
		Coating quality	immersed	-
		<condition></condition>		
		Terminals of the capacito	r shall be immersed in	nto solder bath at 260 ± 5 °C for $10\pm$
		1 seconds or $400 \pm 10^{\circ}$ C for	50^{+1} seconds to 1.5~2	.0mm from the body of capacitor .
			•	l temperature and normal humidity
	Resistance to	for 1~2 hours before mea		in temperature and normal numberry
4.12	solder heat	<criteria></criteria>		
	test	Leakage current	Not more than	the specified value.
		Capacitance Change	Within ±10%	o of initial value.
		tan δ	Not more than	the specified value.
		Appearance	There shall be	no leakage of electrolyte.
		<condition></condition>		
			rding to IEC60384-4N	0.4.7 methods, capacitor shall be
		placed in an oven, the con		
		Т	emperature	Time
		(1)+20°C		≤ 3 Minutes
		(2)Rated low temper	ature (-40°C) (-25°C)	30 ± 2 Minutes
4.13	Change of temperature	(3)Rated high tempe		30 ± 2 Minutes
4.15	test	(1) to $(3)=1$ cycle, to		
		< <u>Criteria></u>		
		The characteristic shall m	neet the following requ	irement
		Leakage current	Not more than the	
		tan δ	Not more than the	•
		Appearance		leakage of electrolyte.
		<condition></condition>		
		Humidity Test:		
		According to IEC60384-	4No.4.12 methods, cap	bacitor shall be exposed for 500 ± 8
		hours in an atmosphere o	f 90~95%R H .at 40 \pm	2° C, the characteristic change shall
		meet the following requir	rement.	
		< <u>Criteria></u>	-	
4.14	Damp heat	Leakage current	Not more than the sp	
7.14	test	Capacitance Change	Within $\pm 20\%$ of in	
		tan δ		of the specified value.
		Appearance	There shall be no lea	kage of electrolyte.

Version

01

Page

9

Version

01

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Page

10

4.15	Vent test	22.4 or lessOver 22.41 <criteria>The vent shall operate with no</criteria>	th its polar ble is appli rent (A) 1 0 dangerous	ity reversed ed.	to a DC po	ower source. Ther
4.16	Maximum permissible (ripple current)	pieces of the capacitor and/or c <condition> The maximum permissible rip at 120Hz and can be applied Table-1 The combined value of D.C - rated voltage and shall not re Frequency Multipliers: Coefficient Freq. (Hz) Cap. (μ F) ~180 220~560 680~1800 2200~3900 4700</condition>	pple curren at maximu voltage and	m operating I the peak A	g temperatu	re

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-OA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
Theavy metals	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	oounds(TBT)			
Triphenyltin com	npounds(TPT)			
Asbestos				
Specific azo com	npounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20 °C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
 - A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	Page	12
------------	------	----

SAMXON

(6) Wiring Near the Pressure Relief Vent
Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas
exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7) Circuit Board patterns Under the Capacitor
Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
(8) Screw Terminal Capacitor Mounting
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.
Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6 Electrical Isolation of the Capacitor
Completely isolate the capacitor as follows.
(1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
(2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
(2) Detween the oxide mountaing community (on 1 Gpcs) and the anode terminal, endode terminal, and other enount paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve
The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the
capacitor.
The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION!
Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open
circuits which could occur during use.
(1) Provide protection circuits and protection devices to allow safe failure modes.
(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
2.Capacitor Handling Techniques
2.1 Considerations Before Using
(1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
with a resistor with a value of about $1k\Omega$.
(3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
rated voltage in series with a resistor of approximately $1k\Omega$.
(4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
(5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
result.
2.2 Capacitor Insertion
(1) Verify the correct capacitance and rated voltage of the capacitor.
(2) Verify the correct polarity of the capacitor before inserting.
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
capacitor.
For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
2.3 Manual Soldering
(1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
(2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
(3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
(4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
() is the total ing the up of the solutioning non-to-the tup expected, to provent moting of the vinity sector.
2.4 Flow Soldering
(1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.

- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----